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Abatraet-An exact solution to the equation of transient forced convection for time varying inlet tempera- 
ture with a general, space dependent boundary condition of an incompressible laminar forced convection 
heat transfer with fully developed flow between two parallel plates is given. The finite integral transform 
technique has been used as the method of analysis. Analytical results for laminar and turbuient flow are 

presented. The results are confirmed experimentally by the frequency response method. 

NCiBMEN_TURE 

D, effective diffusivity, (= a + c,J 
D, equivalent diameter, ( = zd) ; 
?: temperature ; 
a, thermal difUvity ( = k/p+) ; 
c, specific heat at constant pressure ; 
d, half distance between parallel plates ; 
k, thermal conductivity ; 

6 time ; 
u> velocity component in-x direction ; 
ii, average velocity ; 
x, y, cartesian coordinates (x-flow direction, y- 

distance from duct centerline); 
Q, dimensionless temperature [ =(T - To)/ 

GWol ; 

p, fluid density; 
Pr, Randtl number f = c&k) ; 
Re, Reynolds number ( = W/v) ; 
X, dimensionless distance along the duct 

( = x/D3 ; 
cc, parameter for laminar flow (=a;l;f/ii), 

~=~/~); 
E, 6, parameters for turbulent flow. 
Meaning of any other symbols are given in the 

text as they occur. 

1. INTRODUCI’ION 

THE STUDY of unsteady forced convection heat 

transfer in tubes and ducts has recently become 
of greater importance in connection with the 
control of modern high performance heat 
transfer devices. Literature on thermaI transients 
is limited but increasing. Some of the important 
contributions are listed in the references [l-22]. 
In solutions of the problem of transient forced 
convection in laminar flow, it has usually been 
assumed that the inlet temperature of the fluid is 
constant across the flow with a specified timewise 
variation of wall temperature, wall heat flux or 
internal heat generation. There is also some 
work done on the thermal transient problems in 
heat exchangers: the response of a fluid &owing 
steadily through an insulated pipe subjected to a 
step increase in the inlet temperature has been 
published by Rizika [8,9] for both compressible 
and incompressible systems A numerical method 
for calculating heat exchanger dynamics was 
given by Dusinberre [lo] who has presented 
explicit iteration formulas and computation 
guides. In [ 183, a specified co~d~ation i$ given 
to laminar flow in a parallel plate channel for 
time varying inlet temperature and participating 
Walls. 

The general problem of transient forced 
convection heat transfer may be stated as 
follows; the temperature distribution is to be 
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determined in the system at an arbitrary instant 
of time, given; 
(a) The inlet temperature distribution as an 

arbitrary function of time and space. 
(b) Initial temperature distribution for x > 0 as 

an arbitrary function of time and space. 
(c) A prescribed boundary condition which may 

take many forms. Some possible forms are 
described below 

The parallel plate channel under consideration 
is shown in Fig 1. Axial distances from the 
entrance section are measured by coordinate-x, 
while the transverse distances are measured by-y 
(duct centerline corresponds to y = 0). 

Starting point of the analysis is the unsteady- 
state energy equation for a fully-developed 
hydrodynamic flow in a parallel sided duct 

-A prescribed temperature distribution or 
heat flux distribution may in some way be 
enforced on the boundaries of the system, 
and this distribution may furthermore be 
constant or variable with time and/or 
space. 

where 

iW 

8(x, y, t) = 
vx, Y, t) - T, 

M7, ’ 
-A constant heat transfer coefficient to a 

prescribed ambient temperature. 
The system satisfying equation (2a) is subjected 

In the present analysis a general solution is 
to the following restrictions: 

presented for laminar as well as turbulent flow 
(a) Fully developed laminar velocity profile 

in a parallel plate channel under a prescribed 
between the parallel plates 

boundary condition with an inlet temperature 
(b) Frictional dissipation of energy is negligible. 

which varies sinusoidally in time. Experimental 
(c) Axial conduction is negligible with respect to 

results for the lowest eigen-value for turbulent 
bulk transport in the x-direction This is a 

flow are presented 
reasonable assumption when PC& number 
exceeds 100 [20]. 

2. FORMULATION OF THE PROBLEM 

Consideration is given to a parallel plate 
channel whose sides are separated by a distance 

(d) Fluid property variations are also neglected. 
(e) Thermal resistance of the channel wall is 

negligible. 
The inlet and,the boundary conditions of the 

problem can be written 

NO, y, t) = sin /It (2b) 
Flow - 

-_--- _-_-_-.- 

Unheated 
entry length Heated section 

0 x 

FIG. I. 

2d. A steady laminar flow passes through the 
channel. The fluid entering the channel has a 
temperature which is spatially uniform across 
the entrance section but varies sinusoidally with 
time. Therefore we can write the inlet condition 

t > 0. (2~ 4 
One recovers the temperature boundary 

condition at the outer boundary by setting k 
equal to zero and h equal to one and heat flux 
boundary condition by setting h equal to zero. 
When h and k are finite, equation (2d) means 
that the outer boundary loses heat by con- 
vection. 

T(0, y, t) = To + (AT), sin St (1) 

where T, is the cycle mean temperature, (AT), is 
the amplitude and B is the inlet frequency. 

3. SOLUTION 

The foregoing problem can be separated into 
two as follows 
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oh, Y, r) = ux, Y) + ez(x9 Y> t) 
where the new temperature functions satisfy the 
following problems (8~ d) 

a4 a a2e, 
(44 

A periodic solution of the following type can 
be assumed 

MO, Y) = 0 (4bJ &k Y, 0 = eiBt 5(x, ~1. (9) 

=f(x) (‘% d, 

Introducing the definition given by equation 
(9) into equation (8a), we get 

ae, ae2 a2e2 

at+“-=a- ax ay2 (54 
825 uat B 
-mm-- 

w aax i;t=O. (104 

e,(o, y, t) = sin fit (Sb) Boundary and inlet conditions for this problem 
becomes 

In obtaining 8,, firstly it will be assumed that 
h # 0. We define the following auxiliary problem 

aa, aa2 a2a2 
at+uax=aT ay @a) 

(6~ 4 

It is to be noted that the auxiliary problem is 
similar to the original problem for 8, except 

that the periodic condition has a shift by II/Z. 
If we define a new temperature function 

6,(x, y, r) such that 

8, = 8, + itl, (7) 

then the problems given by equations (5) and (6) 
can be combined to get the following problem 

txo, Y) = 1 (lob) 

(~),,=o=o,[k~+hg]~=d=O.(lOc,d) 

Now to solve the problems given by equations 
(4) and (lo), we define the following eigen-value 
problem 

(114 

(lib, c) 

From boundary condition (1 lb) we conclude 
that eigen-functions are cos &y. These eigen- 
functions form an orthogonal set, in the sense 
thatanarbitraryfunction V(x, y)canbeexpanded 
in terms of the eigen-functions_ 

Table I. Eigm-values 
- - 

Boundary condition at y = d E&en-values 

1st kind (k = 0. h = 1) 1, = 
2n-1n 
----,n = 12... 

d2 ’ 

de, 
,+ug=ae 

ay- 

e&o, y, t) = eipt 

2nd kind (h E 0) 

@a) 
&=qn,n= 1,2... 

3rd kind (h and k are finite) Positive roots of i, tan &d = 

(8b) 
hlk 
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wx, Y) = 2 E”(X) cos Any. (12) 
ll=1 

Eigen-values are given in Table 1. 
The expansion coefficients B,,(x) can be 

determined by utilizing the orthogonality pro- 
perty of the eigen-functions, the result is 

j ‘y(x, Y) cos i,ydy. 

B”(X) = O 

1 + -$- sin 2dA, 
(13) 

utilizing the eigen-value problem given by 
equations (11) and the boundary conditions to 
yield 

where the function A(x) is given in Table 2. 

n 

After substituting B,(x) into equation (12) if we 
define a new function F(x) 

F(x) = s” K,(y) Wx, Y) dy (14) 
0 

Tnble 2. Function A(Xl 
____~ - __ _=-_ 

Bound.xy condition at .v = tl XYJ 

1st kind (k = 0, h = 1) - 

2nd and 3rd kind 

then the function !P(x, y) can be written as -.._- ______~ ~_. 

(19) 

(20) 

Solution of these two ordinary differential (15) equation becoIIK 

where we have defined 

d “p” nny 
> 

(16) 

j + 41 sin 2dl, 
n 

Here equation ( 14) is the finite integral trans- 
form of Y(x, y) and equation (15) is the corres- 
ponding inversion formula 

To simplify the method of analysis the case of 
constant velocity will be treated here, and for this 
purpose we substitute P (= mean velocity) for 
the velocity profile. After this change we take the 
transform of the differential equations (4a) and 
(1Oa) according to the definitions given by equa- 
tion (14) to yield 

d&n a *d% -=- s _il K,(Y) dy 
dx ii ay (17) 

0 * a25 s VK,(y)dy - z$ - iir. = 0. (18) 

The? integrals in equations (17) and ( 18) can 
be performed by integrating them by parts, by 

L,(x) = L,(O) exp [-(a, + i6)x] 

where we have defined 

. . 

-m) = q-$-$-q (24) 

Inverting equations (21) and (22) according to 
equation ( 15) we get 

0,(x, y) = f K,(y) e-I*’ j emnZ A(z)dz (25) 
II=1 0 

W y) = “El K,(y)&(O) exp [ --_(a, + i4xl (26) 

and the solution for 0,(x, y. t) can be written 

o&x, y, t) = exp [$/It - SXJ] f e-“+ K,(y)?,N). 
“=I 

(27) 
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Solution for 8,(x, y, t) can be found taking the 
imaginary part of equation (27) 

6,(x, y, t) = sin (/It - 6x) jJ e-“n”K,(y)Z&O). 
n=1 

(28) 

In obtaining 8,(x, y, t), so far it is assumed that 
h # 0. When the boundary condition on the wall 
is of the second kind (e.g. h = 0), ~9~ is not a 
a function of y-coordinate, then it can readily 
be shown that 6, becomes 

e 2 = sin (/3t - 6x). 

Therefore complete solution of the problem 
can be written 

8(x, y. t) = 
m Y, 0 - G 

(AT)0 
= fMx, y, t) 

+ “El e-““K,(y) j eagA(z) dz (29) 
0 

where R,(y) and C, are the new eigen functions 
and expansion coefficient respectively and 0, 
is thenew complex temperature distribution for 
turbulent flow. 3 and & are new variables for 
turbulent flow. 

where 

&k y, 0 = when h # 0 

sin (#?r - 6x), when h = 0. 
i 

sin (j?t - 6x) $J e-“&K(y) 5(O), 
n=1 

The transient energy equation for fully deve- 
loped turbulent flow for variable effective dif- 
fusivity, variabluvelocity across the duct, in the 
absence of frictional dissipation. and axial 
diffusion is 

0(x, y, t) gives the dimensionless temperature 
distribution between two parallel plates when 
the inlet temperature has been changed periodi- 
cally. The solution represents the exact solution 
of energy equation for slug flow assumption. 

When the boundary condition on the wall for 
0(x, y, t) is homogeneous, that is, when the func- 
tion f(x) is zero, then tIr(x, y) is identically zero 
and in that case we have 

ai7, ad, a 
-zfuax=ay [ 1 D(Y)2 . 

Substitution of equation (31) into 
(32) reveals that R,(y) should be a 
function, that is 

(32) 

equation 
complex 

R,(Y) = P,(Y) + iQ,(y). (33) 

Introducing this definition into equation (32) 
we get the following two coupled differential 
equations 

8(x, Y, t) = edx, Y, t). (30) 

8,(x, y, t) shows that each mode of temperature 
decays exponentially along the duct, and this 
decay is inversely proportional to the velocity ii. 
Therefore for a given flow regime as Reynolds 
number increases decay decreases. It is also seen 

-$ D(y)% = - [ 1 
E,uP, - (B - 6~) Q, (34a) 

- &,uQ.- (j3 - 6~) P.. (34b) 

For a given flow regime every value of fl 

that phase lag along the channel is linear and 
slope of this is 8. Also, as the inlet frequency is 
increased phase lag increases and as the velocity, 
E is increased 6 decreases. These have also been 
verified by experiment which is still under further 
investigations. 

The analysis up to now has been for laminar 
flow, for turbulent flow again the nature of the 
problem is the same but with different eigen- 
values, eigen-functions and expansion coeffr- 
cients. Therefore we propose a solution of the 
following type for homogeneous boundary 
conditions 

&(x, y, t) = exp [i(Bt - WI “El C, ema R,(Y) 
(31) 
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gives rise to a set of eigen-vaiues for E and 6 and a condition of an incompressible laminar and 
corresponding set ofeigen-functions for P, and Q, turbulent heat transfer between two parallel 
are also obtained plates is obtained. 

As a special case when the velocity u and e&c- 
tive diffusivity D are constants, the eigen functions 
and eigen-values are found to be 

P n = cos q,y cos h&y CSal 

Q, = - sin q,y sin hfi.y 135b) 

where the eigen value is given by 

L, = of, + ip,, = ,,‘[rj$ - @ - &)J. (36) 

In this case d and 6 is found to be 

4. COMPARISON WITH EXPERIMENT 

In many applications heat transfer in regions 
away from the inlet is of-interest; for such situa- 
tions only the first term in the series need to be 
considered and from the equation (3 I), the asymp- 
totic solution of the decay of an inlet condition 
becomes 

B&x, y, t) = exp [i#t - 8x)] C, e-“1X R,(y). (38) 

(374 

Thus an exact solution to the transient energy 
equation for time varying fluid inlet temperature 
under the space dependent general boundary 

Main input. 

Imaginary part of this solution gives the 
temperature distribution for turbulent flow under 
homogeneous boundary conditions. 

&(x, y, tf = CL emaIr [PL(y) sin (/3t - 8~) 

+ B,(y)cos(@ - 8x)]. (39) 

This solution can be put into the following 
form 

hMain input 

pnuum toppings 

FIG. 2. 
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FIG. 3. 
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FIG. 4. 

t&(x, y, t) = C, J(Pf + Qf) eealx sin (fit - CRC 

+ 6) (40) 

where 

Thus E is a function of y only, and is indepen- 
dent of x and t. 

For a given value of y, P, and Q1 are constants 
and temperatures at any y, (say y = 0) are given 

by 

19(x, 0, t) = A exp (-15,x) sin t/?t - Fx + s) (41) 

where we have defined 

A = C, J[P:tO) + Q:(O)]. (42) 

The form of equations (31) and (41) suggest 
that the results are best confirmed experimentally 
by the frequency response method The apparatus 
and technique used will be described more fully in 
another paper. In its final form the apparatus 
were consisted of a duct 1 in. deep, 1 ft wide 
and 10 ft long The first 3 ft of the duct formed an 
entry section in which the velocity profrle was 
established. A nichrome wire heater was placed 
across the duct at the junction of the entry 
section and working section. In the working 
section copper-constanton thermocouples pro- 
jected to the midpoint of the duct at intervals 
along its length The air flow rate was measured 
by means of an orifice gauge in a length of pipe 
connected to the inlet section by an adopter sec- 
tion. 

The schematic diagram of the apparatus is 
shown in Fig 2. 

Zero-type boundary conditions cannot be 
applied at the fluid-wall interface, but must be 
taken at the outer surface of the wall. 

Calculations show that over the frequency 
range used, the effect of the thickness of the 
walls on the parameter measured was less than 
4 per cent; experimental measurements made 
near the fluid-wall interface suggest that this 
figure is an over estimate. 
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FIG. 5. 

FIG. 6. 

J 

The boundary conditions used were zero 
temperature at one side of the duct and zero heat 
flux at the other. 

A Bercotrol power regulator was used to 
implify the sinusoidal feed back from the wave 
generator. 

The response to the sinusoidal variation of 
heat input have been recorded on a strip-chart. 
From these recordings the amplitudes at various 
points along the channel have been presented in 
graphical forms for variousinlet frequencies, Figs. 
3 and 4. 

Phase lags in the response to the sinusoidal 
variation of heat input have also been deter- 
mined along the duct for various values of 
Reynolds numbers and inlet frequencies, Figs. 
5 and 6. 

As the frequency b of the sine wave at the inlet 
was varied, it was possible from these measure- 
ments to obtiin the values of ?i and 3 for the 
lowest eigen-function after the higher eigen- 
functions excited had damped out. Figs 7 and 8. 

5. CONCLUSIONS 

Solutions determine the temperature distribu- 
tion as a function of time and space in the form 
of infinite series, each term of which includes 
an exponential term in X. This means that each 
mode of temperature distribution decays expo- 
nentially along the duct. 

O 7o02 
1 I ! I I J 

0.06 0 IO 0 14 018 022 026 

Frequency. p. c/s 

FIG. 7. 
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SOLUTION TRANSITOIRE EXACTE DE L’EQUATION D’ENERGIE POUR LA 
CONVECTION FORCEE AVEC VARIATION DE LA TEMPERATURE DEN-TREE 

R-&-On donne une solution exacte de l’equation de la convection for&e pour une temperature 
d’entr& variable avec unecondition aux limites d6pendant de l’espace et pour un &oulement incompressible 
etabli entre deux plans paralleles. On utilise la technique de la transform&s integrale. Les rCsultats 
analytiques sent present&s pour les Ccoulements laminaires et turbulents. 11s sont confirm&s exp&imentale- 

ment par la mCthode de reponse en frequence. 

EXAKTE Lt)SUNG DER ENERGIEGLEICHUNG FOR DEN AUSGLEICHSVORGANG 
BE1 ERZWUNGENER KONVEKTION MIT ZEITABHANGIGER EINGANGSTEMPERATUR 

zmmmenf assung-Fur den Ausgleichsvorgang bei erxwungener Konvektion mit einer zeitabhringigen 
Eingangstemperatur wird eine exakte Losung angegeben, mit einer allgemeinen, raumabhiingigen 
Randbedingung fiir den Warmeilbergang bei inkompressibler, laminarer erzwungener Konvektion und 
voll entwickelter Strbmung zwischen xwei parallelen Platten. Es wurde die Transformationsmethode fur 
endliche Integrale benutzt. Die analytischen Ergebnisse ftir laminare und turbulente Stromung werden 

angegeben. Mit Hilfe der Frequenzgangmethode werden die Ergebnisse experimentell best&t&t. 
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TOYHOE PEUIEHIIE YPhBHEHWI 3HEPrHH HE~~~~~OH~PH~~ 
BbIHY"%JfEHHOfi KOHBEKQlifi &WI H3MEHFftIolIIEflCn BO BPEMEHH 

TEMl-IEPATYPbI HA BXOflE 

huwrai@ss-B CTaTbe ~~~BO~~T~H TOYHOe peUleHHe ~paB~e~~~~ He~T~4~O~~pH~~ BblHylti- 

neHaof4 KoHBeK~~I~~ npa ~aMe~~~~e~c~ BO rtpeMeax4 Te~~epaType Ha Bxoze c fpaHrIsHbm 

ycnomer, 3aBkiCRU&iiM OT KOOpLWHaT, B IIOJIHOCTblO p3331lTOM TWWHBLI W2iQy ;ZBvrf? 

Il3&WlJk?JlbHhIMSi lIJI‘ilCT~lHaMH.&Gi 3H?.ljIliW klCI'IO.ZbiSOBWlCFT #@TOE KOHeqHbIX AIiTWp3ZbHbIX 

npeo6pa3OBaHEilt. nptiBOJ&RTCCr peaynbTaTbI aHami3a aaauHapHor0 II Typ6pJleHTHOrO 


