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Abstract—An exact solution to the equation of transient forced convection for time varying iniet tempera-
ture with a general, space dependent boundary condition of an incompressible laminar forced convection
heat transfer with fully developed flow between two paraliel plates is given. The finite integral transform
technique has been used as the method of analysis. Analytical results for laminar and turbulent flow are
presented. The results are confirmed experimentally by the frequency response method.

NOMENCLATURE
D, effective diffusivity, (=a + &)
D_ equivalent diameter, (= 24d);
T. temperature;
a, thermal diffusivity (=k/pc,);
¢, specific heat at constant pressure;
d, half distance between parallel plates;
k, thermal conductivity;

t, time;
u, velocity component in-x direction;
@, average velocity;
x, y, cartesian coordinates (x-fiow direction, y-
distance from duct centerline);
O, dimensionless temperature [=(T — T,)/
(AT)e);
p, fluid density;
Pr, Prandtl number (=c,u/k);
Re, Reynolds number (= 2iid/v);
X, dimensionless distance along the duct
( = X/ D ¢) 5
o, parameter for laminar flow (=ad?/u),
o(=p/a);
&, 8, parameters for turbulent flow.
Meaning of any other symbols are given in the
text as they occur.

1. INTRODUCTION
THE sTUDY of unsteady forced convection heat

transfer in tubes and ducts has recently become
of greater importance in connection with the
control of modern high performance heat
transfer devices. Literature on thermal transients
is limited but increasing. Some of the important
contributions are listed in the references [1-22].
In solutions of the problem of transient forced
convection in laminar flow, it has usually been
assumed that the inlet temperature of the fluid is
constant across the flow with a specified timewise
variation of wall temperature, wall heat flux or
internal heat generation. There is also some
work done on the thermal transient problems in
heat exchangers: the response of a fluid flowing
steadily through an insulated pipe subjected to a
step increase in the inlet temperature has been
published by Rizika {8, 9] for both compressible
and incompressible systems. A numerical method
for calculating heat exchanger dynamics was
given by Dusinberre [10] who has presented
explicit iteration formulas and computation
guides. In [18], a specified consideration is given
to laminar flow in a parallel plate channel for
time varying inlet temperature and participating
walls.

The general problem of transient forced
convection heat transfer may be stated as
follows; the temperature distribution is to be
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determined in the system at an arbitrary instant

of time, given;

{(a) The inlet temperature distribution as an
arbitrary function of time and space.

(b) Initial temperature distribution for x > 0 as
an arbitrary function of time and space.

(c) A prescribed boundary condition which may
take many forms. Some possible forms are
described below

—A prescribed temperature distribution or
heat flux distribution may in some way be
enforced on the boundaries of the system,
and this distribution may furthermore be
constant or variable with time and/or
space.

—A constant heat transfer coefficient to a
prescribed ambient temperature.

In the present analysis a general solution is
presented for laminar as well as turbulent flow
in a parallel plate channel under a prescribed
boundary condition with an inlet temperature
which varies sinusoidally in time. Experimental
results for the lowest eigen-value for turbulent
flow are presented.

2. FORMULATION OF THE PROBLEM

Consideration is given to a parallel plate
channel whose sides are separated by a distance

Unheated
entry length

Y i Heated section
o X
FiG. 1.

2d. A steady laminar flow passes through the
channel. The fluid entering the channel has a
temperature which is spacially uniform across
the entrance section but varies sinusoidally with
time. Therefore we can write the inlet condition

T, y,t) = Ty + (AT)o sin Bt (D

where T, is the cycle mean temperature, (AT), is
the amplitude and f is the inlet frequency.
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The parallel plate channel under consideration
is shown in Fig. 1. Axial distances from the
entrance section are measured by coordinate-x,
while the transverse distances are measured by-y
(duct centerline corresponds to y = 0).

Starting point of the analysis is the unsteady-
state energy equation for a fully-developed
hydrodynamic flow in a parallel sided duct.

—a—q + uae = aazt9 (2a)
MR T Y52 ‘
where
T(X,,V, t) - 7:)
o(x, y,t) = —————
(x, y, 1) A1),

The system satisfying equation (2a) is subjected
to the following restrictions:
(a) Fully developed laminar velocity profile
between the parallel plates.
(b) Frictional dissipation of energy is negligible.
{c) Axial conduction is negligible with respect to
bulk transport in the x-direction. This is a
reasonable assumption when Péclét number
exceeds 100 [20].
(d) Fluid property variations are also neglected.
(e) Thermal resistance of the channel wall is
negligible.
The inlet and the boundary conditions of the
problem can be written

80, y, t) = sin fit

(‘ﬁ) =0, [k?g + ht)] = f(x)
v ), =0 av

t>0. (2¢d)
One recovers the temperature boundary
condition at the outer boundary by setting k
equal to zero and & equal to one and heat flux
boundary condition by setting h equal to zero.
When % and k are finite, equation (2d) means
that the outer boundary loses heat by con-
vection.

(2b)

3. SOLUTION

The foregoing problem can be separated into
two as follows
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e(x’ ¥, t) = el(x, y) + 92(x’ Y, t) (3)

where the new temperature functions satisfy the
following problems

20, ad,
= 4
ox  u dy? (4a)
6,(0,y) =0 (4b)
(51) -0 [ki‘ﬁ ¥ he,] —19 (ed)
ay y=0 ay y=d
%6, @, &6
P2 P2 _ 00 5
e (a)
0,0, y, 1) = sin Bt (5b)
aoz> [ 26, ]
=2 =0, |k==2+h9,|] =0 t>0.
<ay y=0 dy z y=d
(5¢,d)

In obtaining 6,, firstly it will be assumed that
h # 0. We define the following auxiliary problem
08,

&0, 60,

_8_!_ u ax = a—a—;z—- (6&)
8,(0,y,t) = cos Bt (6b)

( 6." >x=0 =0 [kg; * hgz:ly=d
(6¢, d)

It is to be noted that the auxiliary problem is
similar to the original problem for 6, except
that the periodic condition has a shift by I1/2.

If we define a new temperature function
8.x, y, t) such that

0, =8, + i, )

then the problems given by equations (5) and (6)
can be combined to get the following problem

ot ox oy

640, y, 1) = €*

(8a)

(8b)
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a_a) =0,[ka—0‘+h0c] =0 t>0.

0y Jy=0 oy y=d

(8¢c,d)

A periodic solution of the following type can
be assumed

Ox, y, 1) = e &(x, y). 9)

Introducing the definition given by equation
(9) into equation (8a), we get

2
-Z—;f-—fﬁ—i‘-::=0.

adx
Boundary and inlet conditions for this problem
becomes

(10a)

£0,y) =1 (10b)

(%) ~0, [kﬁ + hg] = 0.(10¢, d)
0y/y=0 oy y=d

Now to solve the probiems given by equations
(4) and (10), we define the following eigen-value
problem

&y,
dy?

dy, dY
- =0,|k—+ hx,] =0
(dy)y=0 |: dy y=d
(11b,¢)

From boundary condition (11b) we conclude
that eigen-functions are cos A,). These eigen-
functions form an orthogonal set, in the sense
thatanarbitraryfunction ¥(x, y)can beexpanded
in terms of the eigen-functions.

+ 2Y, =0 (11a)

Table 1. Eigen-values

Boundary condition at y = d Eigen-values
2n—1
istkind(k = 0. h=1) 4, == g,n=1,2...

2nd kind (h = 0) ;.,="—;1n,n=1,2...
3rd kind (h and k are finite) Positive roots of 4, tan 1,4 =
hik
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W(x,y) = 3 Bi(x)cos,y. (12)
n=1

Eigen-values are given in Table 1.

The expansion coefficients Ba{x) can be
determined by utilizing the orthogonality pro-
perty of the eigen-functions, the result is

d
| ¥(x, y) cos 4,ydy.
Bx) =2

(13)

1
§+ Hsm 244,

After substituting B,{x) into equation (12) if we
define a new function P(x)

P(x) = IK ) P(x, y)dy (14)
then the function ¥(x, y) can be written as
¥xy) = 3 KOT0 (19)
where we have defined
K(y) 08 Y (16)

Y e

Here equation (14) is the finite integral trans-
form of ¥(x, y) and equation (15) is the corres-
ponding inversion formula.

To simplify the method of analysis the case of
constant velocity will be treated here, and for this
purpose we substitute i (= mean velocity) for
the velocity profile. After this change we take the
transform of the differential equations (4a) and
(10a) according to the definitions given by equa-
tion (14) to yield

dd,, af(a%,
7§'=5S LK (y)dy (17)
d 0
azé ad—én B—
SEFK,(y)dy AT l;f,, =0. (18)

0
The integrals in equations (17) and (18) can
be performed by integrating them by parts, by
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utilizing the eigen-value problem given by
equations (11) and the boundary conditions to
yield

dgl"(x) A,. = 91:; x) = A(x) (19)
Tdx u

B (2vif)zm o
dx u u

where the function A(x) is given in Table 2.

Table 2. Function A(x)

Boundury condition at y = d Alx)
st kind (k = 0.k = 1) Y (ﬁ)
I Jdy
2nd and 3rd kind i f(x) K:d)
a

I

Solution of these two ordinary differential
equation become

0,.(x) = e"‘""'j e** A(z)dz 2n
0
Zyx) =Z 0 exp [—(a, + i0)x]  (22)
where we have defined
a, = -2 ; 6= g- (23a, b)
sin 4,d (24)

&,(0) = :
d 1
in\/<2+asm2da>

Inverting equations (21) and (22) according to
equation (15) we get

o) = §

Kiyye f e** A(zydz (25
0
Ux,y) = Y KO exp [—(a, + id)x] (26)
n=1
and the solution for 6/(x,y,?) can be written
B.(x,y, 1) = exp [i(ft — 6x)] ¥ e > K (y)E(0).
n=1

(27
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Solution for 8,(x, y, £) can be found taking the
imaginary part of equation (27)

00, 3,1) = sin (Bt = ) 3 e K,(1)Z0)
@8)

In obtaining 8,(x, y, t), so far it is assumed that
h # 0. When the boundary condition on the wall
is of the second kind (eg h =0), 0, is not a
a function of y-coordinate, then it can readily
be shown that 8, becomes

0, = sin (Bt — 6x).

Therefore complete solution of the problem
can be written

T(x, y,t) - Ty

0(x, Y. t) = (Ano = 02(x$ Y, t)
+ 3 e K () ‘j’ e A(Z)dz  (29)
n=1
where
sin(Bt — 6x) 3 e~ **K(y) &0),
n=1
0,(x,y,0) = when h # 0

sin (ft — 6x), when h = 0.

8(x, y, 1) gives the dimensionless temperature
distribution between two parallel plates when
the inlet temperature has been changed periodi-
cally. The solution represents the exact solution
of energy equation for slug flow assumption.

When the boundary condition on the wall for
6(x, y, 1) is homogeneous, that is, when the func-
tion f(x) is zero, then 6,(x, y) is identically zero
and in that case we have

O(x, y, 1) = 0,(x, y. ). (30)

6,(x, y, t) shows that each mode of temperature
decays exponentially along the duct, and this
decay is inversely proportional to the velocity i.
Therefore for a given flow regime as Reynolds
number increases decay decreases. It is also seen

2209

that phase lag along the channel is linear and
slope of this is d. Also, as the inlet frequency is
increased phase lag increases and as the velocity,
i is increased 6 decreases. These have also been
verified by experiment which is still under further
investigations.

The analysis up to now has been for laminar
flow, for turbulent flow again the nature of the
problem is the same but with different eigen-
values, eigen-functions and expansion coeffi-
cients. Therefore we propose a solution of the
following type for homogeneous boundary
conditions

2]

oc(x, Y, )= €xp [l(ﬂt - 3x):l 21 Cn e™™ Rn(y()3 )
"= 1

where R,(y) and C, are the new eigen functions
and expansion coefficient respectively and 6,
is thenew complex temperature distribution for
turbulent flow. 3 and &, are new variables for
turbulent flow.

The transient energy equation for fully deve-
loped turbulent flow for variable effective dif-
fusivity, variable velocity across the duct, in the
absence of frictional dissipation and axial

diffusion is
a0, 08, ¢ a8,
Substitution of equation (31) into equation

(32) reveals that R,(y) should be a complex
function, that is

R,(y) = Py(y) + iQy(y). (33)

Introducing this definition into equation (32)
we get the following two coupled differential
equations

(32)

d dP, _

a [D(J’) dy :' = - (Z,,HP,, - (ﬁ - Su) Qn (343)
d d

dy l:D(,V) d%,] = — auQ, — (f — du) P,. (34b)

For a given flow regime every value of g
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gives rise to a set of eigen-values for #and 4 and a
corresponding set of eigen-functions for P,and Q,
are also obtained.

As a special case when the velocity u and effec-
tive diffusivity D are constants, the eigen functions
and eigen-values are found to be

(35a)
{35b)

P, = cosn,y cos hu,y
Qu =

where the eigen value is given by

— sinn,y sin hy,y

In this case  and § is found to be
22
i = Din, h ) (37a)
U
5= ﬁ_%%f’_". (37b)

Thus an exact solution to the transient energy
equation for time varying fluid inlet temperature
under the space dependent general boundary
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condition of an incompressible laminar and
turbulent heat transfer between two parallel
plates is obtained.

4. COMPARISON WITH EXPERIMENT
In many applications heat transfer in regions
away from the inlet is of interest; for such situa-
tions only the first term in the series need to be
considered and from the equation (31), the asymp-
totic solution of the decay of an inlet condition
becomes

B.(x, y, 1) = exp [i(Bt — 8x)] C, e "™  Ry(y). (38)

Imaginary part of this solution gives the
temperature distribution for turbulent flow under
homogeneous boundary conditions.

Gax, y, ) = C, e ** [P (y)sin (Bt — dx)

+ 6,(y)cos{Bt — dx)]. (39)

This solution can be put into the following
form

Tharmocoupie
Main input i inputs
\ be. /
— Amplitier —
Main input. recor- g:; "
d;} Ampilifier s
Iniet section A 2 &Thermocoupie
~N a3 i 3 H Air
NG N to atmosphers
Thermocouple g Separation

Iniet heater

Vatioe \ Main input
{ Sinusoidal~” Fower [

input
Orifice piate Py

Wove supply
generator

Air

e

]

L f\fi yA
V

Prassure tappings

FiG. 2.
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6x(x,y,t) = C, J(P? + Q%) e #*sin (Bt — dx

+¢) (40)
where
CoS €& = ———P’—-— sing = —9—1—————
JPT+ 0 NIZEY 3]

Thus ¢ is a function of y only, and is indepen-
dent of x and .
For a given value of y, P, and Q, are constants
and temperatures at any y, (say y = 0) are given
by

0(x,0,1) = Aexp(—a&,x)sin (ft — 6x + &) (41)
where we have defined

A = C, J[PHO) + Q1(0)]. (42)

The form of equations (31) and (41) suggest
that the results are best confirmed experimentally
by the frequency response method. The apparatus
and technique used will be described more fully in
another paper. In its final form the apparatus
were consisted of a duct 1 in. deep, 1 ft wide
and 10 ft long. The first 3 ft of the duct formed an
entry section in which the velocity profile was
established. A nichrome wire heater was placed
across the duct at the junction of the entry
section and working section. In the working
section copper—constanton thermocouples pro-
jected to the midpoint of the duct at intervals
along its length. The air flow rate was measured
by means of an orifice gauge in a length of pipe
connected to the inlet section by an adopter sec-
tion.

The schematic diagram of the apparatus is
shown in Fig. 2.

Zero-type boundary conditions cannot be
applied at the fluid-wall interface, but must be
taken at the outer surface of the wall.

Calculations show that over the frequency
range used, the effect of the thickness of the
walls on the parameter measured was less than
4 per cent; experimental measurements made
near the fluid—wall interface suggest that this
figure is an over estimate.
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6

o8

06

Phose difference, rodions

The boundary conditions used were zero
temperature at one side of the duct and zero heat
flux at the other.

A Bercotrol power regulator was used to
implify the sinusoidal feed back from the wave
generator.

The response to the sinusoidal variation of
heat input have been recorded on a strip-chart.
From these recordings the amplitudes at various
points along the channel have been presented in
graphical formsfor variousinlet frequencies, Figs.
3 and 4

B=025c/s

X = x/De

Phase lags in the response to the sinusoidal
variation of heat input have also been deter-

FiG. 5. mined along the duct for various values of

rodians

Phase difference,

Re =10000
A =073

B=0-25c/s

Reynolds numbers and inlet frequencies, Figs.
5 and 6.

As the frequency B of the sine wave at the inlet
was varied, it was possible from these measure-
ments to obtdin the values of ¥ and J for the
lowest eigen-function after the higher eigen-
functions excited had damped out. Figs. 7 and 8.

5. CONCLUSIONS

Solutions determine the temperature distribu-
tion as a function of time and space in the form
of infinite series, each term of which includes
an exponential term in x. This means that each
mode of temperature distribution decays expo-

FiG. 6. nentially along the duct.

| | |

1 L
002 o086 Q1i0 ola 18 022 026

Frequency, 8, ¢/s
FiG. 7.
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8 xi0, radions

i L . L
0 4 8 12 16 20 24

3L

Frequency, Bx IOz. 7]

FiG. 8.

From the experimental results, it is seen that
the decay of the inlet temperature distribution
near the entrance region is not a single exponen-
tial. It consists of modes of higher frequency. The
basic mode of the inlet temperature varies ex-
ponentially along the channel and the value of the
temperature at a given point depends on the inlet
frequency and Reynolds number. For given fluid
as Reynolds number increases decay decreases.
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SOLUTION TRANSITOIRE EXACTE DE L'EQUATION D’ENERGIE POUR LA
CONVECTION FORCEE AVEC VARIATION DE LA TEMPERATURE D’ENTREE

Résumé—On donne une solution exacte de I'équation de la convection forcée pour une température

d’entrée variable avec une condition aux limites dépendant de I'espace et pour un écoulement incompressible

établi entre deux plans paralléles. On utilise la technique dela transformée intégrale. Les résultats

analytiques sont présentés pour les écoulements laminaires et turbulents. Ils sont confirmés expérimentale-
ment par la méthode de réponse en fréquence.

EXAKTE LOSUNG DER ENERGIEGLEICHUNG FUR DEN AUSGLEICHSVORGANG
BEI ERZWUNGENER KONVEKTION MIT ZEITABHANGIGER EINGANGSTEMPERATUR

Zusammenfassang—Fiir den Ausgleichsvorgang bei erzwungener Konvektion mit einer zeitabhingigen
Eingangstemperatur wird eine exakte Losung angegeben, mit einer allgemeinen, raumabhingigen
Randbedingung fiir den Wirmeiibergang bei inkompressibler, laminarer erzwungener Konvektion und
voll entwickelter Stromung zwischen zwei parallelen Platten. Es wurde die Transformationsmethode fiir
endliche Integrale benutzt. Die analytischen Ergebnisse fiir laminare und turbulente Stromung werden
angegeben. Mit Hilfe der Frequenzgangmethode werden die Ergebnisse experimentell bestatigt.
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TOYHOE PEUIEHWE YPABHEHWA SHEPIUN HECTAUMOHAPHOR
BBIHYKIEHHON KOHBEKIMHU 118 UBMEHAIOMENCA BO BPEMEHN
TEMIOEPATYPHI HA BXOJE

ABROTANES—DB CTaThe NPUBORUTCA TOYHOE DeiieHHe YDABHEHHA HECTALMOHAPHOW BBIHYK-

AeHHOH KOHBERUHY NPH USMEHAIOWEHACA BO BpeMEHH TeMIepaType HA BXOAE C TPAHMYHBIM

yCIoBHEM, 3aBMCAIUMM OT KOODAWHAT, B IMOJHOCTHIO DABBUTOM TeUEHMH MeWI1y IBYMA

napaasienbHEMy mracTudamy. IIpn aHaIH3e HCIONB30BAICH METO KOHEUHBIX MHTEIPATBHBIX

npeobpasoBaunit. IIpuBOZATCA pesy.NBTATH aHANN3A JIAMMHADHOrO i TypOyaeHTHOroO
TevyeHult. Pe3yNpTaThl pacyeTa HOATBEDHKIAKTCA SKCIEPUMEHRTAMU.



